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Abstract: Formation flying spacecraft is emerging as an enabling technology for the
discovery of new type of science for the emerging NASA deep space and Earth science
missions. A formation as an integrated unit will make a system to perform a task and to
implement a mission objective. The control system of these formations has been the
subject of research due to the complexity introduced by number, the distributed nature of
the system, and the onboard requirements for reconfiguration and station keeping. This
paper presents a centralized controller design for the autonomous control of formation of
a set of spacecraft making an optical interferometer named Terrestrial Planet Finder
(TPF). The control system will consider realistic assumptions about the space
environment, spacecraft dynamics, and the attitude control system.
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1. Introduction

Formation flying spacecraft is emerging as an enabling
technology for the discovery of new type of science for
the emerging NASA deep space and Earth science
missions. A formation as an integrated unit will make a
system to perform a task and to implement a mission
objective. The mission may be the co-observation of a
planetary phenomenon, massive distributed sensing of
Earth or another planet atmosphere, or detection of
Earth like planets in our galaxy. Formation flying also
called “distributed spacecraft,” or “separated
spacecraft,” will allow variability in the baseline,
flexibility in deployment, and increased system
capability well beyond the scope of a single spacecraft.

The control system of formation flying spacecraft has
been the subject of research in the recent years[1-7].
Due to the complexity introduced by the number, the
distributed nature of the system, and onboard
autonomy requirements for the reconfiguration and
station keeping, FF systems pose significant challenges
in the area of modeling, estimation and control. This
paper presents a centralized controller design for the
autonomous control of formation of a set of spacecraft
making an optical interferometer named Terrestrial
Planet Finder (TPF) as shown in Figure 1. The control
system will consider realistic assumptions about the
space environment, spacecraft dynamics, and the
attitude control system.

Figure 1: Simulation of TPF using centralized
control system design

2. TPF Formation Dynamics

Consider a likely representation of TPF formation
flying spacecraft consisting of a combiner spacecraft
Spand four collector spacecraft S,, i=1,2,3,4,in an
Earth trailing heliocentric orbit, as depicted in Figure
2. Suppose that the spacecraft can be modeled as rigid
bodies, that is, no flexible
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Figure 2: A representative configuration for TPF
formation flying spacecraft.



structural modes are present. Assume further that the
translational dynamics and the rotational dynamics are
uncoupled. It then follows that the translational

equation of motion for the i spacecraft is of the form
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where 4, is the solar gravitational parameter and is
given by u =1327x10"m’/s*, a, is the
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acceleration produced by the thruster force or control
actions on the i spacecraft, b, is the acceleration due

to solar pressure forces acting on the i" spacecraft,
and ¢, is the acceleration due to the third body effects
from the Earth and the Moon on the i* spacecraft. It
can be shown that for | p,.| << [r,I , the relative motion of

the i" collector and the combiner spacecraft can be
described by Hill’s equation:
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i=1,2,3,4.

The above equation can further be simplified under
certain assumptions. Suppose that the maximum TPF
baseline is about 1 km. Then  the

Pra =max|p,|=0.577 km. A typical value of 7is
|ro| =1 AU. In this case,
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Assume that the sun shades in TPF spacecraft are
circular and have a diameter of 15 meters. Then the
maximum surface reflectivity is about 1400 W/m? flux

at 1 AU. This results in a solar pressure acceleration
of

b <5%10°m/s*.

The perturbation due to the acceleration ¢; depends on

the Earth-formation separation. It is possible to devise
the formation to be far enough so that the effects of
third body perturbations are negligible when compared
to those of the solar pressure. Under these
assumptions, a relatively simpler model of the

<4x10™|p| £2.3%x10" m/ 5%

translational dynamics for the formation can be
described by
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P, =a,—a,+h, i=1,2,3,4. (1)

3. TPF Geometry and Formation
Constraints

The TPF formation flying spacecraft consists of a
combiner spacecraft denoted by S;and four collector

spacecraft denoted by §,,S,,5;,andS,. The TPF

formation geometry depicted in Figure 2 requires that
all spacecraft form a planer configuration, adjacent
collectors have equal distance from each other along a
baseline, and the combiner spacecraft form an
equilateral triangle with respect to the two innermost
collector spacecraft.
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Figure 2: TPF formation geometry.

Define the coordinates of the TPF spacecraft by
S,(x;,¥;,z;), where i=12,3,4. The collector’s

coordinates during the TPF formation flying can
expressed in terms of the coordinates of the combiner
spacecraft by
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The above configuration poses a virtual optical truss
that must be maintained throughout the formation.
This optical truss can be characterized by 7 relative



constraints in each axis. Define the relative error in the
translational constraints by (x;,y;,z;) with
i=12,...,7, where
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The above expressions illustrate that only four
elements in each axis are linearly independent;
therefore, any imposed error constraints can be
expressed in terms of the first four elements of each
axis. These elements are referred to as the
translational error states and are formalized by
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4. An Optimal Control Formulation for

TPF Formation
The problem of TPF formation flying spacecraft can be
cast as an optimal control problem. Suppose that the
TPF spacecraft construct a leader-follower approach,
where the collectors are followers and the combiner
spacecraft is the leader. A representative continuous-

time cost function associated with these formation
constraints can be expressed by
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where (X,7,Z)are as in (2), (Qx,Qy,Qz)and
(Nx,Ny,Nz) are the weighting matrices associated

with the error states to be defined, (u,v,w) are the

translational forces, applied to each collector, that
drive the error states along the three axes of motion ,

and (Rx,Ry,Rz)are appropriate input weighting
matrices to be determined. The positive definite
matrix Q, can be chosen such that
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Similarly, for yand 7 asin (2), Q, and Q, satisfy
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The parameters a;,f;,andy, are scaling factors that
penalize error state deviations from zero to within
specified requirements. Similar expressions can be
given for (Nx,Ny,NZ) that penalizes the relative rate

error between the neighboring spacecraft. Because of
the problem symmetry and formulation simplicity,
however, these matrices can be chosen to be identical
and proportional to an identity matrix, that is

N,=N,=N =Kl ,, k>0 )

The control input forces (u,,u,,u,) are defined to drive

the error states. By construction, the error states
describe the deviation of the constrained relative
distance between each collector and the combiner
spacecraft. Therefore, the collectors must follow the
combiner spacecraft and maintain a pre-specified
relative distance in each axis. It is then meaningful to
relate (u,,u,,u,)to the control input forces needed for

the collectors to drive the error states to zero. That is,
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where u,,v;,and w;, are the translational forces applied

to the i” collector along x-axis, y-axis, and z-axis,
respectively. Finally, because of the ability in scaling
other parameters of the objective function (3) and
formulation simplicity,

Rx = Ry = Rz = I(4x4)' (9)

The time evolution of the cost functions in (3) is
constrained to the dynamics of the error states X and
¥. The error states dynamics depend directly on the
states of the combiner spacecraft S,and the baseline

separation [ between the adjacent collector spacecraft.
In other words, any direct implementation of the state
equations associated with the error states involves the
coordinates of Syand /. As §jcoordinates and [ are

subject to change, the parameter matrices of the
corresponding state equations are not constant, an
undesirable implementation. In addition, the optimal
control problem is intended to solve for control input

to each spacecraft so that the collector spacecraft are
stable and the associated error states are nearly zero. It
is therefore meaningful to work with the collector
spacecraft dynamics directly, construct the error states
accordingly, and compute control laws to each
collector respectively. The following describes the
implementation details.

The control model for each collector spacecraft can be
approximated by a simple rigid mass subject to
Newtonian motion. Let M, denote the mass of the

i collector, then
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Using this model, the overall state equations along
each axis can be written in the compact form by

x=Ax+Bu=Ax+Bu
y=Ay+Byv=Ay+Bv (10)
Z=Az+Bw=Az+Bw,

where
_ ) ; . T
=[x xm o oxm o ox K % X %]

. . . . 1T
y=yn oy oy Y% h % B Wl

_ . . . i
2=z 2z oz oz 4 &4 4 2]

0000

0000
- - 0000
00001000
00000100 9000
00000010 =Loo0 o0

4-{00000001 | 5 _| ¥

00000000 0=Lo o
00000000 M,
00000000 -1
00000000 0 0,-0
o - 3

0 0 o=l

Further, let the desired trajectories along the three axis
be denoted by x,, y,,and z,and given by
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4.1 Continuous-Time LQR Formulation of the TPF
Formation

Suppose that the continuous-time cost functions in (3)

are equivalently expressed by

x
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and are subject to

x=Ax+Bu
y=Ay+ By
Z=Az+Bw

where the parameters are defined by (4) - (12). The
continuous-time LQR optimal control laws for each
axis of the collector spacecraft is given by

u=-R'BIP.(x —x,)
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where (x°,y",z")are the states along optimal
trajectories and (P,,P,,P,)are the solutions to the
algebraic Riccati equations
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The existence and uniqueness of the optimal control
solutions are established under the usual controllability
and observability conditions. As can be seen in (14),
the control forces are constructed based on the relative
error in the states. This means that the formulation
does not require absolute knowledge of the collector
states; instead, it is sufficient to express the collector
states in terms of the combiner states. It is therefore
required to measure the collector states relative to the
combiner states by a relative sensor. It is a common
practice that the sensor measurements can only provide
discrete information and the control laws are
implemented in discrete time. The following describes
the discrete-time formulation of the problem.

4.2 Discrete-Time LQR Formulation of the TPF
Formation

Define the discrete-time representation of the collector

states by

x[k] = x(kT,)
y[k]=y(T,)
z[k]=z(kT)),

where T,is the sampling period of the discretization
and index k refers to the sampled time of k7, when the

continuous states are sampled. Further assume that the
input vectors do not change values between the
sampling  intervals. Then ' the  discrete-time
representation of the collector’s dynamic equations in
(10) is of the form

x[k +1]= Fx[k]+ Hul[k]

y[k+1]=Fy[k]+ Hv[k] (16)
z[k+1]= Fz[k]+ Hw[k]

where  (u[k],v[k],w[k]are the samples of

(u(r),v(r),w(t)) at t=kT,, and the parameter
matrices of F and H are
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Define the discrete-time representation of the objective
functions in (13) by
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where the states are subject to the discrete-time
dynamic equations described in (16). The discrete-time
LQR optimal control laws for each axis of the collector
spacecraft is of the form

ulk]=(H'S,H +R)" H'S,F(x [k]-x,[k])
v[k]=(HS,H+R)" HS,F(y [k]-y,[k]) (8)
wlk]=(H'S,H+R)" HS,F(z'[k]-z,[K])

where (x° [k]. ¥ [k].z° [k]) are sampled states along

optimal trajectories and (SX,S oS, ) are the solutions to

the discrete-time algebraic Riccati equations

0=FS,F-S,~FSH(R+HSH) HSF+G,
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0=FS,F-S,~FS,H(R+HS,H) HSF+G, (19)

0=F'S,F-S,~FSH(R+HS.H) HS,F+G,

5. Conclusion

A centralized control system for a TPF type formation
flying of spacecraft with one combiner and four
collector spacecraft is presented. Using a leader-
follower approach, the optimal control system will
maintain a virtual optical truss that is maintained with
the desired level of precision for the interferometry
applications.
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